

10ME63

(06 Marks)

(06 Marks)

Max. Marks:100

Sixth Semester B.E. Degree Examination, July/August 2021 **Heat and Mass Transfer**

Time: 3 hrs.

1

2

3

a.

Note: 1. Answer any FIVE full questions. 2. Use Heat and Mass transfer Data Hand Book is permitted. 3. Assume missing data if any.

- Write basic laws governing each mode of heat transfer along with mathematical expressions. a.
 - b. Write boundary conditions of first, second and third kinds.
 - C. Consider a slab of thickness L. A fluid at a temperature 130°C with a heat transfer coefficient 250 W/m²°C flows over the surface at x = 0, and another fluid at a temperature 30°C, with a heat transfer coefficient 500 W/m²°C flows over the surface at x = L of the plate. Assuming K for the slab 20 W/m°C, calculate the heat flow rate per m² of slab if the slab thickness is 4 cm. Determine the slab thickness if the heat flow rate is to be reduced to 50%. (08 Marks)
- Derive an expression for the temperature distribution T(x) and for heat flow through an area a. A of the slab of thickness L. Boundary conditions are at x = 0, $T = T_1$ and at x = L, $T = T_2$. There is no energy generation in the solid and thermal conductivity is constant. (10 Marks)
 - Explain (i) Critical thickness of insulation (ii) fin efficiency. b.
 - A steel rod of diameter 2 cm, length 20 cm and thermal conductivity $K = 50 \text{ W/m}^{\circ}\text{C}$ is C. exposed to ambient air at 20°C with a heat transfer coefficient 64 W/m²°C. If one end of the rod is at a temperature 115°C, calculate the heat loss from the rod. Assume long fin.

(06 Marks)

(04 Marks)

- Explain the significance of, (i) Biot number (ii) Fourier number. (iii) Heisler charts. (06 Marks) Explain the criteria for neglecting internal temperature gradients. b. (04 Marks)
- The temperature of a gas stream is measured with a thermocouple. Junction may be approximated as a sphere of diameter D = 2 mm, with K = 30 W/m°C, $\rho = 8600$ kg/m³, $C_p = 400 \text{ J/kg}^{\circ}\text{C}$. The heat transfer coefficient is $h = 280 \text{ W/m}^{2}^{\circ}\text{C}$. How long will it take for the thermocouple to record 98 percent of the applied temperature difference? (10 Marks)
- Sketch and explain in brief each of the following: 4 a.
 - Velocity boundary layer for flow along a flat plate. (i)
 - Thermal boundary layer for flow of a hot fluid over a cold wall. (ii)
 - (iii) Hydrodynamic entry region and hydrodynamically developed region. (12 Marks) A square plate 0.4 by 0.4 m maintained at a uniform temperature of $T_w = 400$ K is b. suspended vertically in quiescent atmospheric air at $T_{\infty} = 300$ K.
 - Determine the boundary layer thickness $\delta(x)$ at the trailing edge of the plate (i) (at x = 0.4 m)
 - Calculate the average heat transfer coefficient h over the entire length of the plate by (ii) using the relations given below :

Properties of air at 350 K

$$\gamma = 20.75 \times 10^{-6} \text{ m}^2/\text{s}, P_r = 0.697, K = 0.03 \text{ W/m}^\circ\text{C}$$

$$\delta(\mathbf{x})|_{\mathbf{x}=\mathbf{L}} = 3.93 P_r^{-\frac{1}{2}} (0.952 + P_r)^{\frac{1}{4}} G_r^{-\frac{1}{4}} L, NU_m = 0.518 (\text{Gr}_L P_r)^{\frac{1}{4}}.$$
 (08 Marks)
1 of 2

5 What is the physical significance of, a.

(i)

(i)

- Reynolds number. (ii) Prandtl number.
- The convection heat transfer coefficients for flow of a fluid through a tube have been b. experimentally determined. Using dimensional analysis obtain the relationship $Nu = f(Re \cdot Pr)$

The following physical quantities may be assumed to influence convection :

- (ii) Thermal conductivity, K Tube diameter, D
- (ii) Velocity, u (iv) Density ρ .
- (vi) Specific heat, C_P and (v) Viscosity, µ
- (vii) Heat transfer coefficient, h

Water flows with a mean velocity of $U_m = 2$ m/s inside a circular pipe of inside diameter C.

D = 5 cm. Assume the pipe is smooth and maintained at uniform temperature $T_W = 100^{\circ}$ C by condensing steam on its outer surface. At a location where the fluid is hydrodynamically and thermally developed, the bulk mean temperature of water is 60°C. Calculate the heat transfer coefficient h using (i) Dittus and Boelter equation (ii) Sieder-Tate equation. Take properties at $60^{\circ}C$ (mean T)

K = 0.651 W/m°C, $P_r = 3.02$, $\rho = 985$ kg/m³, $\mu_m = 4.71 \times 10^{-4}$ kg/m.s (at mean T), $\mu_{\rm w} = 2.82 \times 10^{-4} \, \text{kg/m.s}$ (at wall T)

(i) Dittus-Boelter equation is $Nu = 0.023 R_{\circ}^{0.8} P_{\circ}^{n}$, n = 0.4 for heating and 0.3 for cooling.

- (ii) Sieder-Tate equation is, $Nu = 0.027 R_{e}^{0.8} P_{r}^{\frac{1}{3}} \left(\frac{\mu_{m}}{\mu_{m}}\right)^{0.14}$. (08 Marks)
- How are heat exchangers classified? 6 a.
 - b. What is fouling? List the factors that cause fouling.
 - c. A counter flow heat exchanger of heat transfer area $A = 12.5 \text{ m}^2$ is to cool oil $[C_{ph} = 2000 \text{ J/kg.S}]$ with water $[C_{PC} = 4170 \text{ J/kg.S}]$. The oil enters at $T_{hi} = 100^{\circ}C$ and $m_h = 2$ kg/s, while the water enters at $T_{Ci} = 20^{\circ}C$ and $m_C = 0.48$ kg/s. The overall heat transfer coefficient is $U_m = 400 \text{ W/m}^{2\circ}\text{C}$. Calculate the exit temperature of water and the total heat transfer rate Q. (10 Marks)
- Explain types of condensation. 7 a.

S

- Sketch and explain regimes of pool boiling. b.
- A vertical square plate 30 by 30 cm, is exposed to steam at atmospheric pressure. The plate C. temperature is 98°C. Calculate the heat transfer and the mass of steam condensed per hour. What is the nature of flow?

Use the properties given below at 99°C

$$\rho_{\rm f} = 960 \text{ kg/m}^3$$
, $\mu_{\rm f} = 2.82 \times 10^{-4} \text{ kg/m.s}$, $K_{\rm f} = 0.68 \text{ W/m}^\circ\text{C}$, $T_{\rm sat} = 100^\circ\text{C}$, $h_{\rm fg} = 2255 \text{ KJ/kg}$.
(10 Marks)

- Define the following with mathematical expressions: 8
 - Spectral hemispherical emissivity. (ii) Hemispherical emissivity. (i)
 - Spectral Black body emissive power. (iv)Blackbody emissive power. (08 Marks) (iii)
 - Explain concept of view factor and its physical significance. b. (04 Marks)
 - The emission of radiation from a surface can be approximated as a black body radiation at C. T = 1000 K.
 - (i) What fraction of the total energy emitted is below $\lambda = 5 \ \mu m$?
 - What is the wave length below which the emission is 10.5 % of the total emission at (ii) 1000 K?
 - (iii) What is the wavelength at which the maximum spectral emission occurs at T=1000 K? (08 Marks)

(08 Marks)

(04 Marks)

10ME63

CENTRAL

LIBRARY

(06 Marks)

(04 Marks)

(04 Marks)

(06 Marks)